Intersection Theory of Boundary Tangency Manifolds for State Feedback Systems
نویسندگان
چکیده
منابع مشابه
Discrete Morse Theory for Manifolds with Boundary
We introduce a version of discrete Morse theory specific for manifolds with boundary. The idea is to consider Morse functions for which all boundary cells are critical. We obtain “Relative Morse Inequalities” relating the homology of the manifold to the number of interior critical cells. We also derive a Ball Theorem, in analogy to Forman’s Sphere Theorem. The main corollaries of our work are: ...
متن کاملOn the Intersection Forms of Spin Four-manifolds with Boundary
We prove Furuta-type bounds for the intersection forms of spin cobordisms between homology 3-spheres. The bounds are in terms of a new numerical invariant of homology spheres, obtained from Pin(2)-equivariant Seiberg-Witten Floer K-theory. In the process we introduce the notion of a Floer KG-split homology sphere; this concept may be useful in an approach to the 11/8 conjecture.
متن کاملTime-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملSingular Perturbation Theory in Output Feedback Control of Pure-Feedback Systems
This paper studies output feedback control of pure-feedback systems with immeasurable states and completely non-affine property. Since availability of all the states is usually impossible in the actual process, we assume that just the system output is measurable and the system states are not available. First, to estimate the immeasurable states a state observer is designed. Relatively fewer res...
متن کاملTangency bifurcation of invariant manifolds in a slow-fast system
We study a three-dimensional dynamical system which exhibits a rich variety of singular bifurcations. Our focus is the tangency of the unstable manifold of an equilibrium point with “the” repelling slow manifold, in the presence of a stable periodic orbit emerging from a Hopf bifurcation. This tangency heralds complicated and chaotic mixed-mode oscillations (MMOs). The classification of the typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2003
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.39.654